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ABSTRACT

The Navier-Stokes equations are first specialized for very slow motion
to obtain the equation governing the pressure distribution in the hydro-
static bearing. The resulting differential operator of the governing
equation is the Laplacian. The solution domain is rectangular and
contains two or three pairs of symmetrically located wells of rectangu-
lar shape. Any one of the wells may be considered to have unit pressure
while the remaining wells and the outside boundaries of the pad have
zero pressures. Since the system is completely linear, the pressure dis-
tribution on the pad with arbitrary well pressure combinations can be
obtained by superposition.

The differential equation is solved numerically with the aid of a
digital computer. The differential equation is converted to a set of
linear simultaneous equations through a finite difference scheme. The
coefficient matrix is tridiagonalized through suitable partitioning. Be-
cause of the quasi-tridiagonal property of this matrix, the solution is
obtained by an upper-lower procedure. Since this procedure causes
considerable round-off errors when applied to large sensitive systems,
an optional iteration with single steps is provided. A machine object
time study with reference to the grid size and number of iterations is
included. The effect of truncation errors is demonstrated by produc-
tion runs of a typical case with different grid sizes.
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I. INTRODUCTION

This work was initiated to study the location of the
pressure resultants in the hydrostatic bearings of the
Advanced Antenna System for the NASA/JPL Deep
Space Instrumentation Facility. The knowledge of the
pressure distribution on the pad under different well
pressure conditions is essential for an efficient and safe
hydrostatic bearing design.

The wells and the pad of the hydrostatic bearing are
assumed to be rectangular as shown in Fig. 1. The num-
ber of well pairs might be two or three. These distances,
a, b, c,d, e, and §, are the geometrical parameters of the
problem. The solution is given for the cases in which
only one of the wells has unit pressure and all the remain-
ing wells and the exterior boundaries of the pad have

Fig. 1. Geometric parameters of the hydrostatic bearing
pad and the wells

zero pressures. Since the differential equation and the
boundary conditions are linear, the pressure distribution
on the pad for any arbitrary well pressures can be ob-
tained by superposition, as follows.

Let p;(x, y), P;, x;, and y; be, respectively, the pres-
sure distribution in the pad, the total thrust, the x and y
coordinates of the point of action of the total thrust when
the jth well has unit pressure. If a; is the actual pressure
in the jth well, then it follows that

N
p(x,y) zzlaf Pi(x,y) (1)
=
N
P =Zlai P, (2)
=
N
X =,~=1x,P,~ aj (3)
P
N
Y=isyiPioy (4)
P

where p(x, y), P, X, and Y are, respectively, the actual
pressure distribution in the pad, the actual total thrust,
the actual x and y coordinates of the point of action of
the total thrust, and N is the total number of wells. A
general purpose digital computer program is developed
to give p; (%, y), Pj, x;, and y; for any specified values of
the geometric parameters.



JPL TECHNICAL MEMORANDUM NO. 33-119

Il. FORMULATION OF THE PROBLEM

The general motion of a Newtonian fluid can be de-
scribed by the Navier-Stokes equations (Ref. 1) which

2 .,
—§d1vw>:|
¢ ou ov 0 ow , Ju
rurGR)] EE )] @
Do_y _p, of (y00 2,
0 ov | w 0 ou ov
rEGE R EEGER)] ©
Dw

—7_0o 9 w 2.
pﬁ_z az+az["<28z 3d1vw):|

EpE e ) o

% , 0(pu) , 3(pv) , 9(pw) _
at+ ox + oy + 0z 0 8)

where the first three equations are the dynamic equilib-
rium equations, and the fourth one is the continuity
equation. For very slow motion in the pad, the inertial
and body forces in the equilibrium equations can be
ignored. This yields

gradp = pViw (9)

Assuming the fluid is incompressible, the continuity equa-
tion can be reduced to

divw =0 (10)

In scalar form, Egs. (9 and 10} are

%+%+?:0 (11d)

From Eqs. (9 and 10) one can eliminate w by first taking
the divergence of both sides of Eq. (9) and then sub-
stituting Eq. (10) into it, as follows.

div grad p = div [p v?w] (12)
div grad p = p v2 [div w] (13)
divgradp =0 (14)
Eq. (14) is identical with
vip=20 (15)

The problem reduces to the solution of the Laplacian
in the solution domain shown in Fig. 1 with the pre-
scribed boundary conditions. Since there is no flow in the
z direction

P — g (16)
Then

p=p(xy) (17)

and the Laplacian operator in the chosen coordinate sys-
tem is
02 02

vi=—— +

“w oy (18)
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lll. FORMULATION OF NUMERICAL SOLUTION

Equation (15) is solved by means of finite differences.
In Fig. 2, the finite difference grid is shown. Assuming
an 0(h?) approximation, the difference operator corre-
sponding to the Laplacian is as shown in Fig. 3. In this
figure, the unknown mesh function is shown with the
symbol P;, ; where i is the row number and j the column
number in the grid. The application of the difference
operator on the unknown mesh function P;, ; yields a set
of simultaneous linear equations in the form

[Q1 {P} = {C} (19)

I-—lE-—-— ID +IF+ ID +IF+- ] —I—IE-—

oot

Fig. 2. The finite difference grid

In any one row of the [Q] matrix, there are only five
non-zero entries. Relabeling the P;, ; terms with a single
subscript counting column-wise in the grid, the [Q]
matrix will assume the form shown in Fig. 4. Since the
mesh function is known on the wells and on the bound-
aries of the pad, this information can suitably be imposed
on [Q] as follows: (1) For the zero values of the P;, ; on
the exterior boundaries of the pad, the corresponding

A
°=(v2v)_'i4 l o? H 2(1+d) ]——raz l - 040 67)
' S| i,j i i+l

L | IR

ithj —

Fig. 3. The finite difference operator associated
with v2

rows and columns of the augmented matrix are deleted;
(2) For the values of the P;, ; on the wells, the non-
diagonal and diagonal entries of the corresponding rows
of the augmented matrix are made respectively zero and
one, and the entries of these rows corresponding to {C}
are made either one or zero depending upon whether the
well carries unit or zero pressure, respectively. After this
modification [Q] is still a five diagonal inatrix as shown
in Fig. 4, which can be partitioned as in Fig. 5 to yield a
quasi-tridiagonal matrix as in Fig. 6. The entries of the
quasi-tridiagonal matrix are square submatrices of order
two less than the number of rows in the grid, and the
order of the tridiagonal partitioned matrix is two less than
the number of columns in the grid. The equations shown
in Fig. 6 are of the type of Eq. (19). An upper-lower
procedure as summarized below can be used for solution

(Ref. 2).

?TR‘T-T~T—T-+—T—T—+—:
iy e ! | '
CONREE .

. eos . l i | l l |
o' oo ol .

l ‘o.. I':E:.I o.| ‘ l ‘ ]
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| o. -:-.‘ o.l ' i
———*.—_}-_4-—.—&—.. ._LL——f—T—T—-

oo et e
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——f—#-#—i—+—4—$=%.%——

Fig. 4. The coefficient matrix [Q]

Any positive tridiagonal [Q] can be written as
[Q] = [L] [U] (20)

where [L] and [U] are as shown in Fig. 7. The [R] and
[S] submatrices of [L] and [U], respectively, can be ex-
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pressed in terms of the [A] and [B] submatrices of [Q],
yielding the following recursive formulas:

(S:]= [Bi] (21)
[R.] = [Sna]™ [An] (22)
[Sa]= [Ba] — [Sn1]? [An][An-] (23)
- LT -
-1~ _._%_.

Fig. 5. The partitioning of the set of equations to obtain
a quasi-tridiagonal coefficient matrix

- |

Fig. 6. The set of equations with quasi-tridiagonal
coefficient matrix
Having defined [L] and [U], Eq. (19) can be written
[L] {Y} = {C} (24)
{Y} = [U] {P} (25)

By means of a forward sweep, one can obtain the {Y.}
from the formulas

where

-4 —>pod— --(

1 - 3 r.___-
B.I A] P.l C]
A_|B
2|%2 [A Py )
A3 83 A3 P3 C3
A B, |A P C
41 4174 4 4
< =< —?
NN NiaE
C
Am-IBm-IAm-l P’"’ m=1
—
A Bl (P I ]lSm
L - b - )

»
K
b d

me]| m—l‘.\m-‘

R l smll

[U] matrix

[L] matrix

Fig. 7. The [L] and [U] matrices associated with [Q]

(Y.} = {C.} (26)
{Ya} = {Cu} — [Ra] {¥ns} (27)

Having computed the {Y.}, the {P.} are computed by
a backward sweep from

(B} = [S:]" {¥) (28)
{Pus} = [Sna]{{¥ar} — [Ana] (B3} (29)

When the number of unknowns P;, ; is of the order of
hundreds, the above upper-lower procedure would yield
rather large round-off errors in sensitive systems. To im-
prove the results obtained through this procedure, an
iteration with single steps is applied (Ref. 3) using the
above results as the initial estimate as described below.

By applying the finite difference operator illustrated in
Fig. 3 on the mesh function P,, ;, one writes

Piy,j+ Py, s + a®(Pi, 5.1 + P, ju1)
2 (1+ a?)

Equation (30) would be satisfied if the P;,;’s were the

true solutions of Eq. (19). For other cases, Eq. (30) can

be rewritten as

PE, ,+ P+ a® (PO, + P®,.)

i-1, § i+, j i, j+1

(1 + of)

Pi,j:

(30)

Pi(a;'l) —
(31)

for an iteration scheme. In this equation, the superscript
in parentheses indicates the number of iterations per-
formed. The correction shown in Eq. (31) should be
applied only to those grid points whose pressures are
not known. The algorithm of the iteration is such that
the grid points are swept in row (or column) sequence,
always using the most recently obtained P;,;’s.

A Fortran program was developed to perform the
above procedures. The flow chart of the program is given
in Fig. 8.
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ENTER
\ 4
LREAD IN GEOMETRIC AND NUMERICAL PARAMETERS AND BOUNDARY CWDITIONSI

llS THE UPPER-LOWER PROCEDURE REQUESTED ?

INITIALIZE: SET GRID COLUMN COUNTER =i EXECUTE ITERATION WITH SINGLE
ESTABLISH TYPICAL A, 8, C OF Q —t] STEPS IN THE REQUESTED CYCLES

BY USING EQ. (31)

——{ COPY A, 8, C TOBLOCKS Al, 81 AND CI ¥
1 - J COMPUTE THE TOTAL THRUST AND

STATICAL MOMENTS
DOES THE Jth COLUMN PASS THROUGH A
WELL PAR?

PRINT THE RESULTS

(o]
| 1s runcHING REQUESTED? |

MAKE THE DIAGONAL ENTRIES (CORRESPONDING
TO THE ROWS OF GRID PASSING THROUGH THE YES
WELLS} OF A1 AND 81 ZERO AND ONE, RESPEC - m -
TIVELY,
¥ [ PUNCH CARDS |

15 THE WELL UNDER QUESTION PRESSURIZED? |

MAKE THE ENTRIES OF C1 CORRESPONDING
TO THE GRID ROWS PASSING THROUGH
THE PRESSURIZED WELL UNITY
]
Lel  corval, s, c1 oNTARE M ]

] INCREMENT THE COLUMN COUNTER J BY ow]

IS THIS THE LAST GRID COLUMN NEXT TO
THE PAD BOUNDARY ?

s e

CALL SUBROUTINE MITSUB TO EXECUTE THE FORWARD
SWEEP ON TAPE ITI (WHICH CONTAINS THE SUBMAT-
RICES OF Q) TO GENERATE AND STORE ON TAPE ITS
THE SUBMATRICES S, Y AND A, AND TO EXECUTE THE
BACKWARD SWEEP ON TAPE ITS TO GENERATE AND
STORE ON TAPE [TO THE SUBMATRICES P,

READ THE COMPUTED PRESSURES FROM TAPE ITO INTO
THE CORE MEMORY .

Fig. 8. The flow chart of the program
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IV. RESULTS

In Fig. 9, a typical hydrostatic bearing used for the
error and object time study is shown. In Fig. 10, thrust
versus number of grid points is plotted, where the num-
ber of iteration sweeps is taken as a parameter. In Fig.
11, the object time versus number of grid points is
plotted, where the number of iteration sweeps is taken as
a parameter.

Several test runs indicated that the upper-lower pro-
cedure yields considerable round-off errors when the
number of unknowns is greater than a few hundred. This
is because of the sensitive character of the algebraic
system. Therefore it is the authors’ suggestion that the
program should be run by by-passing the upper-lower
procedure, in which case no tapes are necessary. The
results given in Fig. 10 and 11 were obtained through
iteration only.

WELL WITH
ZERO PRESSURE

WELL WITH
ZERO PRESSURE

WELL WITH
UNIT PRESSURE

WELL WITH
ZERO PRESSURE

@
ho— Q) —rf— ] ot U} e A et U] —f

10" ——p——10" 10" 10" 10°

Fig. 9. Hydrostatic bearing configuration used in
error and object time studies
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I I
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Fig. 10. Total thrust versus number of unknowns for the
case shown in Fig. 9 (iterations only)

immERESEE
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E 10 y
2
2 /
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z W
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g , A At n=300
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2 //, L1 T |t
/' "1 ”’ .—-—-‘"—— \lw
et =1 T
L3 —1 | |
0 1000 2000 3000 4000 5000

NUMBER OF UNKNOWNS

Fig. 11. The object time versus number of unknowns for
the case shown in Fig. 9 (iterations only)




[Al, [B], {C}
a,b,c,d,ef
D

Dt
div w
grad p
1
Ljk

[L], [U]
N

p,p(x. y), pi(x, y)

P, P;

0]
[R], [S]

NOMENCLATURE

Submatrices of the augmented matrix

Geometrical parameters
Total derivative with respect to time

V.w
vp
Identity matrix

Unit vectors of the cartesian coordi-
nate system

Lower and upper matrices of [Q]
Number of wells in the pad

Pressure, actual pressure function,
and pressure function caused by jth
well alone

Actual total thrust and total thrust
caused when jth well is pressurized

Coeflicient matrix
Submatrices of [L] and [U]

JPL TECHNICAL MEMORANDUM NO. 33-119

Components of velocity vector
Velocity vector
Cartesian coordinates

Coordinates of the point of action of
P,

Coordinates of the point of action of
actual thrust

Components of body force

Auxiliary solution vector

Ay/Ax, mesh size ratio

Actual pressure in the jth well
Partial derivative operators
Mass per unit volume
Viscosity

Del operator

Laplacian operator



JPL TECHNICAL MEMORANDUM NO. 33-119

REFERENCES

1. Schlichting, Hermann, Boundary Layer Theory, McGraw-Hill Book Company, Inc.,
1955.

2. Schechter, S., ""Quasi-tridiagonal Matrices and Type-insensitive Equations,’’ New
York University, Applied Mathematics Ceriter Report TID-4500, May 1959.

3. Crandall, Stephen H., Engineering Analysis, McGraw-Hill Book Company, Inc., 1956.




JPL TECHNICAL MEMORANDUM NO. 33-119

APPENDIX

The program, written in Fortran for IBM 7090, can The input of the program should be compatible with
be run for grids not larger than 50 x 150. The number of  the Fortran statements:

grid intervals corresponding to the geometric parameters READ INPUT TAPE 5, 1, 1A, IB, IC, ID, IE, IF,
shown in Fig. 1 can be assigned any non-zero, positive IM, IPW, ITI, ITO, ITS, AL T
integer value compatible with the above limits. The hy- READ INPUT TAPE 5, 11, KMAX, IPUNCH,
drostatic bearing may have two or three pairs of wells. KM, PL

Any one of the wells may be specified to have unit pres- 1 FORMAT (1116, F6.3)

sure. Iteration with single steps may or may not be 11 FORMAT (316, F15.5)

requested. When iteration is requested, the number of  where the symbols are explained in Table 1. The listing
iterations must be specified. of the Fortran program is given on the following pages.

Table 1. Explanation of symbols appearing in input statements

1A Number of grid intervals in a well in y-direction. a—IA*Ay,
1A >1

-3 Number of grid intervals between a well and the nearby
outside boundary of pad in y-direction. b—1B*Ay, 1B > 1

1IC Number of grid intervals between two neighboring wells in
y-direction. ¢ =1C*Ay, IC > 1

1D Number of grid intervals in a well in x-direction. d==1D*Ax,
D>1

IE Number of grid intervals between a well and the nearby

outside boundary of pad in x-direction. e =—IE*Ax, IE > 1

IF Number of grid intervals between two neighboring wells in
x-direction. f —1F*Ax, IF > 1

M Number of well pairs {or number of wells in a row in
x-direction). 2 < IM < 3

{1424 The number of the well which has unit pressure. This number
should be obtained by counting the wells row-wise. For ex-
ample, for the pressurized well in Fig. 9 1IPW—=3.

im logical number of a binary tape used by upper-lower pro-
cedure.

(14 Logical number of a binary tape used by upper-lower pro-
cedure,

iTO Logical number of a binary tape used by upper-lower pro-
cedure.

KMAX An indicator for method of solution. If KMAX =1, the

program is requested to do iteration only; otherwise, it will
first apply upper-iower procedure.

IPUNCH An indicator for punched output. If IPUNCH = 1, the pro-
gram also produces punched output; otherwise, it deletes
the punched output.
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26

25

29
30

32

10

LIST8

LABEL

SOLUTION OF LAPLACIAN FOR HYDROSTATIC BEARING

DIMENSION A(50+50)sB(50950)+C(50)9A1(50+50)9sB1(50+50)+C1(50)

1sP(50+150)

COMMON TA2IBeICoIDWIESsIF o IMoyIPWoAL o IHsIVIBETAWIHZ2sIV24ITIsITOWITS,
1A9BsCsAl9Bl,sC1lsP

READ INPUT TAPE SsleolAsIBsICeIDsIEWIFsIMeIPWsITINITO»ITS»AL
READ INPUT TAPE 54+11sKMAX s IPUNCHy KMePL
IH=2# (JA+IB)+IC+1
[V22#]E+(IM=1)*#TF+IM*ID+]

Flvsiv-1

DX=PL/FI1V

DY=DX®AL

WRITE OQUTPUT TAPE 692sDXsDYsIAIBsICsIDeIESIFeIMeIPW
WRITE OUTPUT TAPE 6s12sPL

IH2=1H-2

1v2=1Vv-2

IF (KMAX=1) 2347999,23

WRITE OUTPUT TAPE 697 9sKM

FORMAT ( 36H1THE PROGRAM IS REQUESTED TO PERFORMs17s3Xs 40H ITERAT
1I0ONS AFTER UPPER LOWER PROCEDURE.)
LFF=IE

LFS=1E+ID+1

LSF=zLFS+IF-1

LSS=LSF+1D+1

IF{(IM=-2)25925426

LTF=LSS+IF=-1

LTS=LTF+ID+1

BETAz~2.%(14+AL®AL)

REWIND ITI!

REWIND ITO

REWIND ITS

L1=1B-1

L2=TA+18+1

L3=1A+IB+I1C-1

L4=TA+IB+IC+1A+1

DO 30 I=1,1H2

C(I)SOQ

Cl(1)=0.

DO 29 J=1+1IH2

All4J)=0,

B(IysJ)=0.

Al(1+J)=0,

Bl1(1+J)=0,

CONTINUE

CONTINUE

DO 40 I1=1,41IH2

A(Tl,1)Y=AL*®AL

B(Is1)=BETA

IF(1=1)40+35432

IF (IH2-1) 40436+34




36
35
34
40
52
51
57
59
61
63
65
54
58

64
75

77
79
81
78
89
B2
83
84
80
86
85

88

87

90

Bllel-1l)=1le

GO TO 40
Bllel+l1=1,

GO TO 40
BllelI-11=1e

GO TO 35

CONTINUE

DO 100 I=1s1V2

IF (1-LFS) 52451+51
IF (1-LFF)65+54+54
IF (1-LSF)65+57¢57
IF (I-LSS)58+59+59
IF (IM=2)65+65461
1F (1-LTF)65+63+63
IF (I-LTS)64+65+65

WRITE TAPE ITIs ((A(MsN)sB(MsM)sN=19IH2)sC(M)esM=1+1H2)

GO TO 100

1TCH=1

GO TO 75

ITCH=2

GO 70 75

1TCH=3

DO 90 K=1s1IH2

IF (K=L13180+80+77
IF (K~L2)78+79+79
IF (K-L3)80,80,81
IF {(K-L4) 89,80+80
IF (ITCH-1PW) B2+83,+82
IF (ITCH+IM-IPW) B2+83,82
Cl1(K)=C(K)

GO TO 84

Cl(K)=1le

Al (KeK)=0,
Bl(KeK)=1,

GO 70 90
Al(KeKI=A(K oK)

IF (K=1)85+85+86
IF (1H2-K)100,87,88
Bl1(1,1)=BETA
Bl(1e2)=1e

GO TOo 90
Bl(KoeK=1)=B(KoK=-1)
Bl{KsK)=B(KsK)
Bl{KoeK+1)=B(KoK+1)
GO TO 90
Bl(KeK=1}1=B(KeK~-1}
Bl1(KesK)=BETA
CONTINUE

WRITE TAPE ITI1e ({ALI{MeN]»BI{MoN)}oN=19IHZ

DO 95 M=1,1H2
Cli{Mm)=0.
DO 94 N=1,1H2

JoClimMiomMzleIH2Z)

JPL. TECHNICAL MEMORANDUM NO. 33-119
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Al1tMsN)=0,
94 Bl(MyN)=0,
95 CONTINUE
100 CONTINUE
REWIND ITI
CALL MITSUB
REWIND ITO
DO 110 I=1,1IH
DO 110 J=1,1V
110 P(1,J)=0,
D0 120 J=1s1V2
JJz=1Vv2-J+1
READ TAPE ITOs (P(I419JJ+1)sI=191H2)
120 CONTINUE

GO TO 7998

7999 WRITE OUTPUT TAPE 6989KM

8 FORMAT ( 36H1THE PROGRAM IS REQUESTED TO PERFORMsI793Xs17H ITERATI
10NS ONLY.)

7998 1F (IPW=IM) 61024+6102,6101
6102 IPC=2%#]PW-1

GO TO 6103
6101 IPC=2%(IPW-IM)
6103 K=0

JI=1E+1

JLsJI+ID
6888 I1=18+1

IL=11+1A

IF (K+1-1PC) 6000,6999+6000
6000 DO 6001 I=I1,1L

DO 6001 J=JTsJL
6001 P(14J)=0,

GO TO 6003
6999 DO 6002 I=1I1,.1IL

DO 6002 J=JIlsJL
6002 P(lsJ)=1e
6003 K=K+1

GO TO (6100962005610056400+6100+6600) 9K
6100 I1I=1L+IC

IL=11+]A

IF (K+1-1PC) 6000+6999+6000
6200 Jl=JL+I1F

JL=JI+1D

GO TO 6888
6400 IF (IM=2) 6200+6600+6200
6600 ALL=AL*AL

SAND=2e%*(1e+ALL)

IHl=IH-1

IVl=lv-1

IF (KM) 6601+880846601
6601 DO 351 K=1sKM

K=K

SENSE LIGHT 1

L=1

12
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8000 GO TO (8100+8200+830098400+58500+8600+87005350)L
8100 11=2
IL=]8
JI1=2
JL=1vl
GO TO 8900
8200 II=11+41B+]A
IL=IL+TA+IC
GO TO 8900
8300 I1=11+4IC+IA
IL=1L+1A+IB
GO TO 8900
8400 JI=2
JL=1E
11=2
IL=1IH1
GO TO 8900
8500 JI=JI+1E+ID
JLsJL+ID+IF
GO TO 8900
8600 JI=JI+IF+ID
JL=JL+ID+IF
GO TO 8900
8700 JI=U1+IF+ID
JL=JL+ID+I1E
GO TO 8900
8900 DO 8950 I=I1,1IL
DO 8950 J=JI.JL
PlIoJ)=(P{I=14J)+P ({141 J)+ALLE(P(14J=-1)+P(14J+1)))/SAND
8950 CONTINUE
L=L+1
IF (L-6) 8806+8805,8806
8805 IF (IM-2) 8806+8804+8806
8804 L=L+1
8806 GO TO 8000
350 CONTINUE
351 CONTINUE
8808 PSS=0e
PXM=0,
PYM=00
DO 150 I=1,1H2
DO 150 J=1s1V2
Fl=1
FJd=J
PSS=PSS+P(1+14J+1)%AL
PXM=PXM+P ( 1+]1,J+1 )AL %F T*AL
PYM=PYM+P (I+1,J+1 ) #AL*FJ
150 CONTINUE
PS55=PSS*#DX##%2
PXM=PXM%EDX*#3
PYM=PYMED X *%3
DO 200 K=1,1V,e10

i3




JPL TECHNICAL MEMORANDUM NO. 33-119

JB=K
JE=JB+9
IF (JE-IV) 190+190,2G1

190 WRITE OUTPUT TAPE 693sJBsJEs((P(leJ)sJ=UByJE)eIz1lslH )
200 CONTINUE

20

1 DO 202 K=JBslV

202 WRITE OUTPUT TAPE 6+49Ks(P(IsK)sI=14IH )

IF (IPUNCH = 1) 220492105220

210 WRITE OUTPUT TAPE 795+IAsIBsICHIDIIEsIFsIMyIPWsALsDXoDY s (P(T1sJ)sJ

220

11
12

14

1=19IV)el=1s1H)
WRITE OUTPUT TAPE 63s6sPSSsPXMyPYM
CALL EXIT

1 FORMAT (11164F6e3)

2 FORMAT ( 98H1SOLUTION OF LAPLACIAN FOR HYDROSTATIC BEARING
1UTKU-BARONDESS COMMUNICATIONS RESEARCH JPLs//7779 3H DXsT71Xs1H=y
2F1346 9/93H DYsT71X91H=9F13¢69/311H WELL WIDTHs63Xs1H=4316+s5H *DY
39/939H BORDER WIDTH IN DIRECTION OF WELL PAIRs35Xs1H=916s5H #DYs/
4937H DISTANCE BETWEEN THE WELLS IN A PAIRs37XsXH=9I6s5H #DY e/ +12
5H WELL LENGTHs62Xs1H=316¢5H *DXs/+53H BORDER WIDTH IN DIRECTION P
6ERPENDICULAR TO WELL PAIR921Xs1H=316+5H *DXs/961H DISTANCE BETWEE
TN THE WELLS OF ANY TWO CONSECUTIVE WFLL PAIRS»13XslH=916+5H #DXs/
8+21H NUMBER OF WELL PAIRS953Xs 1H=416s /+52H NUMBER OF WELL
9 WITH UNIT PRESSUREs COUNTED ROW-WISE$22Xs1H=516)

3 FORMAT ( 24H1PRESSURE MATRIX COLUMNS,s 110¢5Xs7THTHROUGHs 1109//77/7
1(10F12.8))

4 FORMAT (25H1PRESSURE MATRIX COLUMN 4110s//7779(F1248))

S FORMAT (81693F8e5+/9(7F108))

6 FORMAT (16HITOTAL THRUST ISeF20e69//+51H STATIC MOMENT ABOUT THE T
10P. EDGE OF THE BEARING ISsF20.64//+52H STATIC MOMENT ABOUT THE LEF
2T EDGE OF THE BEARING ISeF20e6)

FORMAT (316+F1545)
FORMAT (//77/+22H THE LENGTH OF THE PADsF20e3)
END




20

25

27
28

29
30

37
38

39
40

45

49
50

70
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LABEL

LISTS8

SUBROUTINE MITSUB

DIMENSION AP(50950)9AB(50950)+SP(50+50)9SB(50950)sYP(50)sYB(50) VP

1(50)4VB(50)9sRHS(50) 9P (50}

COMMON TA9IBeICoIDsIEsIF s IMeIPWIAL s IHeIVeBETAsIH2sIV2sITIoITOSITSy

1APsAB oSPoeSBeYPsYBsVPsVBIRHSD,P

READ TAPE ITIo((AB(I9J)eSBlTeslieJd=19IH2)eYB(I)sI=19IH2)
M=1 '
CALL MATIS (SBsIH2+sRHSsMsDsSP)

IF (D) 20410004920

WRITE TAPE ITSe{(SP(IeJ)sAB(19J)eJ=13TH2)sYB(I)sI=1s1H2)
DO 25 I=141H2

DO 2% J=1e1H2

SB(lsJ)=SP(1,J)

JH21=1IH2~-1

1v21i=1v2-1

DO 100 L=1,1V21

READ TAPE ITIs((AP(1eJ)9SP(TeJ)eUd=19IH2)sYPL{I)sI=1s1IH2)
DO 30 1=141H2

DO 28 K=191H2

P(K)=0e

DO 27 J=1slH2

P(K)=P(K)+SB(1+J)#AP(JsK)

CONTINUE

DO 29 J=1s1H2

SB(I4J)=P(J)

CONT INUE

DO 40 I=1,1H2

DO 38 K=]1,1H2

P(K)=0,

DO 37 J=1s1H2

PIK)=P(K)+SB(1sJ)*AB(JsK)

CONTINUE

DO 39 J=141H2

SP(T14J)=SP(1eJ)=P(J)

CONT INUE

CALL MATIS (SPsIH2sRHSsMsD+AB)

IF (D) 45,1001445

DO 50 I=1,1H2

DY=0,

DO 49 J=1,41H2

DY=DY+SB(1+J)%YB(J}

YP(1)=YP(1)~DY

WRITE TAPE ITSe((AB(I1sJ)sAP(I9J)eJ=1,1H2)aYP(1)s1l=191H2)
DO 70 I=1+1H2

DO 70 J=1+1H2

SB(IeJ)=AB(1,sJ)

DO 60 I=141H2

YB{1)=YP(])

DO 59 J=1,1H2

15
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59 AB(19sJ)=AP(14J)
60 CONTINUE
100 CONTINUE
DO 110 I=1s1H2
DO 105 K=1s1IH2
105 YP{1)=SB(1sK)*YB(K)
110 CONTINUE
WRITE TAPE ITOs(YP(I)sI=19IH2)
BACKSPACE ITS
DO 200 L=1s1IV21
BACKSPACE ITS
READ TAPE ITSe{((SB(IsJ)sAB(1sJ)sJ=1sIH2)sYB(I)sI=1sIH2)
DO 210 I=191H2
DY=0,
DO 209 K=1sIH2
209 DY=DY+AB(I+K)*YP(K)
210 YB(1)=YB(1)-DY
DO 220 I=1s1H2
YP(1)=0.
DO 219 K=1s1H2
219 YP({I)=YP{I)+SB(I+K)®*YB1{K)
220 CONTINUE
WRITE TAPE ITOs (YP(I)sI=1s1IH2)
BACKSPACE ITS
200 CONTINUE
RETURN
1000 WRITE OUTPUT TAPE 6410
GO TO 2000
1001 LL=L+1
WRITE OUTPUT TAPE 69+11sLL
2000 CALL EXIT
10 FORMAT (60H1THE FIRST DIAGONAL SUBMATRIX IS SINGULAR. SOLUTION DEL
1ETEDs)
11 FORMAT (23H1THE DIAGONAL SUBMATRIXsI110+31H IS SINGULARe SOLUTION D
1ELETED.)
END

16
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SUBROUTINE MATIS
THIS SUBROUTINE IS IDENTICAL WITH MATIV ON JPL LIBRARY
TAPE (AUGUST 1962) WHICH 1S REASSEMBLED FOR 50X50 ARRAY.
MATRIX INVERSION
MATIS oX

Y MATIS
SUBROUTINE MATIS (AsN+sBeMyDETERMC)
THIS SUBROUTINE SAVES MATRTX A
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Y

250044
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MATIN
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Tot

17



JPL TECHNICAL MEMORANDUM NO. 33-119
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10
15
20
30

40
45
50
60
70
80
85
90
95
100
105
110

130
140
150
160
170
200
205
210
220
230
250
260
270
31¢C
320

SUBROUTINE MATIN (AsNsBsMsDETERM)
LABEL
LISTS

THIS SUBROUTINE IS IDENTICAL WITH MATINV ON JPL LIBRARY TAPE
(AUGUST 1962) WHICH 1S RECOMPILED DELETING COMMON STATEMENT AND
CHANGING DIMENSION STATEMENT FOR 50X50 ARRAYS.

MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS

DIMENSION IPIVOT(50)9A(50950)+sB(50+1)sINDEX(5042)sPIVOT(50)
EQUIVALENCE (IROWsJROW)» (ICOLUMsJCOLUM)s (AMAXs Ty SWAP)

INITIALIZATION

DETERM=1.0

DO 20 J=1sN
IPIVOT(J)=0
DO 550 I=1,N

SEARCH FOR PIVOT ELEMENT

AMAX=0,60

DO 105 J=1sN

IF (IPIVOT(J)-1) 60s 1059 60

DO 100 K=1sN

IF (IPIVOT(K)=-1) 80s 100y 740
IF (ABSF(AMAX)-ABSF(A({JsK))) 85, 100s 100
IROW=J

1COLUM=K

AMAX=A (JsK)

CONTINUE

CONTINUE
IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF (IROW-ICOLUM) 140y 260 140
DETERM=-DETERM

DO 200 L=1sN
SWAP=A(IROW,sL)
A(IROWsL)=A(ICOLUMsL)
A{TICOLUMsL ) =SWAP

IF(M) 260y 260y 210

DO 250 L=1s M
SWAP=B(IROW,sL)
B(IROWsL)=B(ICOLUM,L)
B{ICOLUMsL 1 =SWAP
INDEX{Is1)=IROW
INDEX([+2)=1COLUM
PIVOT{1)=A(ICOLUM,ICOLUM)
DETERM=DETERM#PIVOT(I1)




(aNaXa)

aNa¥a!

aNaNal

330
340
350
355
360
370

380
390
400
420
430
450
455
460
500
550

600
610
620
630
640
650
660
670
700
705
710
740

DIVIDE PIVOT ROW BY PIVOT ELEMENT

A(ICOLUM, ICOLUM)=1,0

DO 350 L=1sN
A(ICOLUML)=A(ICOLUMSL)/PIVOT(])
IF(M) 380s 380y 360

DO 370 L=1.M
BOICOLUMoL)=B(ICOLUML)/PIVOT(1])

REDUCE NON-PIVOT ROWS

DO 550 L1=1.N

IF(L1-ICOLUM) 400, 550, 400
T=A(L1sICOLUM)
A(L1+ICOLUM)=040

DO 450 L=1sN
A(LIsL)=A(L1IsL)-A(ICOLUMsL)=®T
IF(M) 550, 5504 460

DO 500 L=1sM
B(L1+L)=B(L1sL)-B(ICOLUMsL)*T
CONTINUE

INTERCHANGE COLUMNS

DO 710 1I=1¢N

L=N+1~1

IF (INDEX(L+1)-INDEX(Le2)) 630y 710+ 630
JROW=INDEX(Ls1)
JCOLUM=INDEX (L2}

DO 705 K=1sN
SWAP=A (K¢ JROW)
A{KsJROW)=A (K¢ JCOLUM)
A(K o JCOLUM) =SWAP
CONTINUE

CONTINUE

RETURN
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